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A study is presented of the transfer of heat within a saturated sand with reference to the analysis of artificial
freezing of the ground. First, the main characteristics of the adopted finite element approach and of the technique
that introduces the latent-heat effects during the water—ice phase transition are illustrated. Subsequently, the results
of some laboratory freezing tests are presented on the basis of which the computer program and the procedure for
working out the thermal constants of the soil were calibrated. Finally, a parametric study is discussed that con-
cerns the effects of pipe diameter, distance between pipes, and coolant temperature on the progress of the 0°C isotherm.
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Une étude du transfert de chaleur dans un sable saturé en vue de I'analyse du gel artificiel du sol est présentée.
En premier lieu les principales caractéristiques de I’approche d’éléments finis adoptée et de la technique qui intro-
duit les cffets de la chaleur latente durant la phase de transition eau—glace sont illustrées. Subséquemment, 1’on
présente les résultats d’essais de gel en laboratoire qui sont 2 la base de la calibration du programme d’ordinateur
et de la procédure pour établir les constantes thermiques du sol. Finalement, ’on discute une étude paramétrique qui
porte sur les effets du diamétre des tuyaux, de la distance entre eux, et de la température du réfrigérant sur le pro-

gres de I'isotherme 0°C.
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1. Introduction

Artificial freezing of the ground has been used for decades
to improve the mechanical characteristics of soils for exe-
cution of large underground works in difficult geotechnical
conditions (Sanger 1968; Andersland et al. 1989). In’par-
ticular, ground freezing has been adopted in geotechnical,
transportation, and mining engineering to assist in the con-
struction of tunnels and shafts below the water table and
for shallow excavations associated with large buildings.

This technique is based on the circulation of low-
temperature fluids through pipes inserted in the ground and
sometimes represents the only economical solution, com-
pared to other methods, able to satisfy the geotechnical
design requirements.

The development of artificial ground freezing has been
largely influenced by advances in both research and tech-
nology. In fact, the theorctical and experimental research
carried out in this field led to a deeper knowledge of the
mechanical properties of frozen soil and of important effects
induced by freezing (e.g., the volumetric deformation of
soil), thus allowing development of practical procedures for
design and control of the freezing systems (Frivik and
Thorbergsen 1980). The technological advances were related
to improved drilling techniques, monitoring systems, and
cryogenic techniques and to the experience gained in suc-
cessful completion of numerous projects.

It can be observed, however, that the “optimization” of
some important parameters, such as the diameter of the
freezing pipes, distance between the pipes, and the temper-
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ature of the coolant, has not been studied extensively despite
their influence on the time and costs of the treatment and,
hence, on the overall design of a ground-freezing system.

In this paper the results of a numerical and experimental
study are presented with the objective of developing a numer-
ical procedure for the analysis of freezing of saturated sands
which could be adopted to optimize the freezing system
through suitable parametric investigations.

The numerical analysis of the artificial freezing of saturated
soils represents a nontrivial problem because of the com-
plex mechanical and thermal phenomena involved, including
the nonlinear conductive transfer of heat within the soil;
the water—ice phase transition and the associated release of
latent heat; the influence of water seepage on heat transfer;
the volume increase of the frozen soil and the possible
migration of water toward the freezing front; and the change
of mechanical characteristics, in particular the shear strength
and time-dependent frozen soil properties.

To reduce the complexity of the solution algorithm, the
problem has been limited by considering only the thermal
aspects and by introducing some simplifying assumptions.
This reduces the analysis of freezing of saturated sands to the
solution of the so-called Stefan problem, i.e., the transfer
of heat by conduction while accounting for phase changes.

In choosing the technique for numerical solution both
finite element and boundary integral equation methods were
considered (Zabaras and Ruan 1990; Zabaras and Mukherjee
1987). The finite element method appeared preferable (Hwang
et al. 1972; Shen 1988), since it permits easier treatment
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of the nonlinear heat transfer and a straightforward extension
to the coupled thermal-stress analyses, which is the future
direction of the research.

In the following, the governing equations and the finite ele-
ment formulation are illustrated first. Details are also provided
on the time integration technique and on the procedure
adopted to account for the latent heat during the water—ice
transition. Then, the results of laboratory freezing tests car-
ried out on large cylindrical sand samples are presented.
These have been used to check the computer program and to
evaluate the procedure used to determine the thermal prop-
erties of the sand.

Finally, the results of a parametric study illustrate the
influence of pipe diameter, pipe separation, and coolant
temperature on the advance of the 0°C isotherm.

A matrix notation is used herein to describe the numerical-
solution approach. Boldface lowercase and uppercase letters
denote vectors, and matrices, respectively. A dot above a
term indicates a time derivative, and a superscript T means
transpose.

2. Governing equations and boundary conditions

Before discussing the governing equations it is necessary
to outline the assumptions used:

(i) the soil is saturated,

(i) the thermal properties are not influenced by the stress
and strain variation during freezing,

(iii) no seepage flow is permitted within the soil,

(iv) the volume increase due to freezing is neglected.
The first and second assumptions should not limit the appli-
cation of the solution technique. The third assumption is
necessary, since freezing would not be effective in the pres-
ence of significant water flow (Hashemi and Sliepcevich
1973). In fact, if an appreciable seepage velocity exists (say
1-2 m/day), artificial freezing would not be appropriate
because of the continuous introduction of heat by the flow-
ing water. To avoid this negative effect, the seepage within
the soil should be prevented through adequate provisions
before freezing. If no seepage flow exists, the “local” motion
of water is restricted by the small size of pores and, hence,
convection can be neglected.

It is worthwhile observing that eliminating the motion of
pore water permits the use of the same governing equations
for heat transfer within both the frozen and unfrozen soil.

The validity of the fourth hypothesis depends strongly
on the characteristics of soil. In particular, it can be accepted
for clean, coarse-grained soils. ©On the contrary, the behav-
iour of silt or clay during freezing is markedly influenced by
the effects of moisture migration toward the freezing front
due to frost heave. As a consequence, the use of the results
of this work should be limited to clean sands or gravels.

With the above assumptions, the analysis of the freezing
of saturated sand can be reduced to the so-called Stefan
problem (see e.g., Carslaw and Jaeger 1959) or to the analysis
of heat transfer by conduction within the soil undergoing
phase changes (Nixon and McRoberts 1973).

In the following, the governing equations and the finite ele-
ment formulation are discussed. The procedure for deter-
mining the thermal properties of sand, for a correct analysis
of in situ freezing problems, will be discussed in a subsequent
section.

The equation governing the two-dimensional flow of heat
by conduction through an isotropic medium can be written

in the following form (Carslaw and Jaeger 1959):

i(k£)+i[k£)+§=pcﬂ
dx dx dy dy ar
where x and y are the Cartesian axes; T and ¢ denote tem-
perature and time, respectively; k is the coefficient of thermal
conductivity; p and ¢ are the mass density and specific heat,
respectively; and Q is the rate of internal heat generation
per unit volume. Note that for the problem under examina-
tion the material parameters depend on temperature. The
extensions of [1] to the axisymmetric and other conditions
are given in Carslaw and Jaeger (1959).
If no phase change occurs, four main conditions can be
imposed on portions of the boundary I' of the flow domain ().
The temperature is known on I'; (prescribed temperature,
or “essential,” condition) as

[2a] T-T(x,y,t)=0

and the heat-flow component normal to the boundary is pre-
scribed on I', (heat-flow, or “natural,” condition) as

(1]

aT
)'ay

(2b] k(z‘x 9T i ]—an (x,9,£)=0

dx

where g, and T represent, respectively, the imposed rate of
heat flow per unit area and the prescribed temperature; and
i, and i, are the direction cosines of the unit outward vector
normal to the boundary.

The convection or radiation boundary conditions can be
expressed by [2b] where g, is replaced by the rates of heat
flow per unit area associated with convection and radiation.

For phase transition a surface F(x,y,r) = 0 exists, having
an a priori unknown shape, that separates the frozen and
unfrozen zones. Similar to other moving-boundary prob-
lems (Crank 1984), this surface is characterized by two con-
ditions: one on the free variable (i.e., the temperature) and
one on its gradient. The first condition is that the tempera-
tures of the unfrozen (7,) and frozen (T}) soil are equal to the
melting—freezing temperature T :

[3a] T, (xy.0) =Tdxyt)=T,

The second condition requires that the net rate of heat flow
normal to the moving surface, the latent heat per unit volume,
and the velocity v, of the surface itself fulfill the relationship

C T, . oT, T, | oT,
[35] kf lx—é—;+l),—§ _ku lx-a—x"*'ly 3y

=Lpv,

where k; and k, are the coefficients of thermal conductivity
of frozen and unfrozen zones, respectively; L is the latent heat
per unit mass; and p is the mass density.

3. Finite element formulation

3.1. Conduction problem without phase change

The finite element formulation of heat-conduction problems
without phase changes (Zienkiewicz 1977; Lewis and Morgan
1983) will be considered first. The heat-flow domain () is
subdivided into elements in which the temperature depends
on the nodal values, for the eth element:

4] T(oyn) =b(xy) T.0)
where T, is the temperature within the element, and vec-
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tors T, and b, collect, respectively, the nodal temperatures and
the interpolation functions.

By writing [1] in the so-called weak form (Zienkiewicz
1977), and by considering the natural boundary conditions
[2h], mathematical manipulations lead to the following
matrix relationship for the entire finite element mesh:

IS5 MT+NT=f,+f;

Matrices and vectors in [5] are obtained by suitably over-
lapping the contributions of each element, denoted by the
index e;

(6a] M, =[ (VB)TK, (Vb])dQ
(66] N, =[ b, (pc), bT dO
[7al  fq =], 5.0, d0

(7] [ = L~ b,g,, dT

At i-
o St

where i denotes the iteration number and

Sf=fo+fr
Note that since matrices M and N are functions of temper-
ature they are, in turn, functions of time.

At the beginning of the iterations for a time increment
Ar all quantities at time 7 are known. Trial values of the
nodal temperatures at time ¢t + Ar are extrapolated on the
basis of those computed at the end of the preceding incre-
ments, and the relevant matrices and vectors are evaluated at
time ¢ + Ar. Then, improved values of the nodal temperatures
at time ¢ + At are obtained through [8}], and all matrices
and vectors are recalculated. This iterative process termi-
nates when the difference between the nodal temperatures at
t + Ar evaluated at two subsequent iterations decreases
below a chosen lower limit.

3.3. Phase transition

The transition between solid and liquid phases is intro-
duced in the solution of the Stefan problem by the boundary
conditions [3] on the surface separating the frozen and
unfrozen zones, which is also referred to as a moving
boundary. '

Some of the finite element approaches presented in the
literature which can be referred to as variable mesh methods
(Zabaras and Ruan 1989, 1990) explicitly take into account
3] in the calculations. They are conceptually similar to
those applicable to unconfined seepage analyses (Gioda and
Desideri 1988) and modify the geometry of the grid during
the iterative solution process until a part of its boundary
approximates with the required accuracy the shape of the
moving surface at a chosen time.

Approaches of this type are usually rather accurate, but
their use becomes exceedingly complex if several moving sur-
faces exist that tend to join with each other when freezing
propagates. Since this situation is likely to occur when deal-
ing with artificial freezing of ground, an alternative class
of approaches, the so-called fixed-mesh techniques, has to be
considered. They operate on a grid of constant geometry,

+M)+NT +N,)]T;‘+m =Ar(fil +f',)+[

Here VT = {a/ax, 3/3y} is the linear differential operator,
K, is the 2 X 2 matrix of the thermal conductivity coeffi-
cients, and iI = {ix iy} is the direction cosine vector (cf. [2b]).
Vectors f,q and f - collect, respectively, the nodal heat flows
due to internal heat generation per unit volume and those
associated with the imposed rate of heat flow on T',,. 7,, is
the imposed rate of heat flow g, (c.f. (2b] for the eth finite
element.

Before integrating with time the system of scalar equa-
tions [5], it is necessary to impose the essential boundary
conditions expressed by [2a].

3.2. Time integration

The step by step time integration of [5] has been based on
the assumption of linear variation of the time dependent
variables within a time increment At > 0. This permits the
rewriting of [5] in the following incremental form:

_AL(MH

i-1
2 1+Ar +Ml)+Nt+Al +Nl)]Tl’

hence the nodal coordinates remain unchanged during solu-
tion and allow the moving boundary to pass through the
elements. Usually these procedures are less accurate than
the preceding ones, but offer the nonnegligible advantage
of handling several simultaneous moving surfaces without
requiring particular programming provisions.

Various fixed-mesh procedures have been proposed in the
literature for the solution of the Stefan problem (Voller et al.
1990). Some of them introduce the latent-heat effects through
a variation of the heat capacity ¢ within a given tempera-
ture range. They lead to satisfactory results if the phase
change occurs in a relatively wide temperature interval, as
in the case of alloys. However, if the change takes place at
almost constant temperature, this procedure would involve
a heat capacity versus temperature relationship similar to a
Dirac function. Such a sharp variation could be overlooked
by the time integration process, or could introduce some
numerical instability, unless extremely small time incre-
ments are used, with a consequent large increase of com-
putational time.

To limit this drawback, an alternative class of techniques
was suggested (Comini et al. 1974; Morgan et al. 1978;
Rolph and Bathe 1982) that adopts the enthalpy (i.e., the
integral of the relationship between pc and temperature) as
a new variable. In fact, in the case of phase change at con-
stant temperature, the enthalpy—temperature relationship
approaches a step function, which should introduce less
severe time integration problems than the previous Dirac-
like function.

A technique different from the above was adopted in this
study; it does not introduce a fictitious variation of the heat
capacity nor does it require the use of enthalpy. The latent
heat is viewed as a positive or negative source of heat, uni-
formly distributed on the volume, which becomes active
when the freezing—melting temperature is reached, and that
is accounted for in the finite-element analysis in integral
form.

At the beginning of the calculations the nodal vector of
total latent heat (g,) is evaluated by the following equa-
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FiG. 1. (a) Scheme of the one-dimensional freezing problem
(upper, lower, and right sides of the slab are impervious to heat;
the temperature is prescribed on the left side. (b) Finite element
(F.E.) and analytical temperature distributions for two time
values. :

tion, where the summation runs over the element of the
mesh:

91 q,=%3, [ b,Lpd0

Then, when the temperature of the nth node reaches the
phase transition value, the node is “constrained” so that no
further variation of its temperature may occur. The incre-
ments of nodal heat Ag, ; are then evaluated for each (jth)
time step until the accumulated value reaches the previ-
ously evaluated nodal latent heat:

oy 3, Aq,; =q,,

When {10] is fulfilled the node is released and its temperature
is again allowed to vary with time. If during a time step
the accumulated nodal heat overcomes the corresponding
latent heat, the node is released and a nodal heat increment
is imposed equal to the difference between the previously
accumulated heat and the total latent heat.

This technique is apparently more “robust” than those
based on the fictitious variation of the heat capacity or on the
enthalpy approach. In fact, it is not affected by possible
namerical instability caused by Dirac and step functions
and, hence, relatively large steps can be adopted for time
integration. On the other hand, it involves perhaps more
computer time because of the matrix manipulations required
for constraining the nodes that reach the freezing temperature.

Some ‘test problems were solved to check the accuracy
of this technique. They showed that the numerical analysis
can provide reasonably precise results, from an engineering
viewpoint, with an acceptable computational effort. As an
example, the numerical solution of a one-dimensional prob-
lem is shown in Fig.l and compared with the corresponding
analytical solution reported by Comini et al. (1990).

4. Experimental investigation

To apply the described solution technique to actual engi-
neering problems, it is necessary to evaluate the equivalent
thermal parameters of the sandy soil. This is not an easy
task. In fact, various procedures have been suggested in the
literature that do not lead to unique values of these param-
eters. In addition, once one of them has been chosen, it is dif-
ficult to assess a priori the accuracy of the consequent
numerical results.

To overcome this problem some laboratory freezing tests
were performed to check the computer program and to
choose a suitable procedure for determining the equivalent
thermal parameters.

4.1. Equipment characteristics and deposition of sand

The experimental setup consists of a thermally insulated
cylinder, having internal diameter and height of 1 m, filled
with saturated sand of uniform density. A steel pipe, installed
at the centre of the container, is used for the circulation of
liquid nitrogen. The vertical and horizontal sections of the
equipment are shown in Fig 2.

The cylindrical geometry of the container and its insula-
tion, consisting of polyurethane foam, lead to axisymmetric
and planar heat-flow conditions during the tests. This permits
easier interpretation of the experimental results by the finite-
element analysis.

The soil used in the tests was obtained by mixing prede-
fined quantities of four sands having almost constant grain
size. This eliminates the presence of silt (and the related
problems caused by the migration of water towards the frost
front) and leads to the well-graded grain-size distribution
shown in Fig. 3.

Before the deposition of sand about 10 cm of water was
placed in the container. Then deposition was initiated by
spreading the sand from a sieve kept at a constant level
above the water surface. Additional water was introduced
during deposition to maintain the water level about 10 cm
above the deposed sand. This technique led to a saturated soil
having a fairly uniform density throughout the container.

The same technique was adopted for preparing small sam-
ples for density measurements. The water content ranged
between 0.279 and 0.30, the dry unit weight between 14.3
and 14.6 kN/m® , and the porosity between 0.417 and 0.436.

A small gap of about 2 cm was left between the sand and
the top of the container to avoid possible damage caused
by the volume increase of water during freezing. Drainage
was allowed using three small-diameter pipes inserted in
the container wall at the level of the 2 cm gap. Because of
an iron oxide impurity, the freezing temperature of water,
determined using a cryoscope, was —0.5°C.

During the deposition of sand nine thermal transducers
were placed at mid-height of the container, to reduce the
disturbance due to the upper and lower bases. They ‘were
located along three radii, at an angle of 120° from each
other and at distances of 150, 270, and 390 mm from the -
centre.
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FiG. 3. Grain-size curve of the sand used in the freezing tests.

Three additional transducers were used to measure the
temperature of the room, of the nitrogen at its outlet from the
steel pipe, and the outer part of the insulation.. They operate
from about —200 up to +500°C, with an accuracy higher
than 0.5°C. Two thermocouples were also introduced within
the polyurethane foam to check the effectiveness of the ther-
mal insulation.

The 12 transducers were connected to a personal com-
puter for data acquisition and storage. An overall view of the

assembled equipment and of the data-acquisition unit is_

shown in Fig. 4.

4.2. Results of the freezing tests

Three tests were performed using pipes with external
diameters of 33.7, 60.3, and 88.9 mm. These are commer-
cially available pipes that have been used in actual freez-
ing projects. In particular, the 60.3 mm diameter pipes are
commonly used in practice.

The initial temperature of the soil ranged between 18 and
19°C. To facilitate the subsequent interpretation of the exper-
imental data, the nitrogen flux was regulated in such a way
that a constant temperature of —183°C was monitored at
the pipe outlet.

For the sake of briefness only the results of the first test
will be presented. The results of the other two tests will be
shown subsequently together with those obtained by the
numerical analyses.

The variation with time of the readings of the thermal
transducers is shown in Fig. 5. Curves q, b and c, repre-
senting the temperatures within the sand, were obtained by
averaging the readings of the transducers at the same distance

from the axis. Only two transducers did not operate properly
during two tests and were neglected. The maximum tem-
perature difference measured at different radii at the same dis-
tance from the pipe was less than 1.5°C. This indicates that
the heat flow within the container was close to the expected
axisymmetric conditions.

The remaining curves in Fig. 5 represent the room tem-
perature (d) and the temperature of the outer part of the
insulating material (e). The polyurethane foam provided
adequate thermal insulation, since its temperature is influ-
enced by the room temperature, but it is barely affected by
the temperature inside the container. .

The coolant flux was stopped when the transducers farthest
from the pipe reached 0°C. This avoided damage to the con-
tainer due to the volume increase. In fact, some litres of
water had already escaped the cylinder through the drainage
pipes before reaching this condition.

The recorded data show that after some hours the tem-
perature of all transducers reached the same value (about
—1°C), which remained practically constant for several days
until the equipment was dismantled; this indicated that the
polyurethane foam provided adequate thermal insulation.

5. Analysis of the experimental results

It was pointed out that heat flow inside the container is in
the radial direction only and that, consequently, the numer-
ical analyses can be performed in plane (normal to the cylin-
der axis) and axisymmetric conditions. On this basis, a one-
dimensional finite element mesh was adopted consisting of
a “line” of 50 four-node quadrilateral elements, each 1 cm in

-length so that the total length of the mesh coincides with
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FiG. 4. Overall view of the equipment and the data-acquisition unit used for the freezing tests.

the inner radius of the container. The element height is con-
stant throughout the mesh and does not affect the numerical
results. All sides of the mesh were considered impervious to
heat except for that adjacent to the freezing pipe, at which
a temperature of —183°C was imposed.

Having defined the scheme for the finite element analyses,
there is a major problem in determining the values of the
thermal parameters characterizing the homogeneous medium
equivalent to the saturated sand, including thermal conduc-
tivity k, thermal capacity ¢, and latent heat per unit mass L.
For convenience, these parameters are expressed as follows
both SI units and in terms of calories, grams, seconds and
degrees Celsius:

kywer = 0.56 W/(m-K) = 0.001 338 cal/(s-cm-°C),
. =23 W/(m-K) = 0.005 495 cal/(s-cm-°C),
Comer = 4186 J/(kg-K) = 1.0 cal/(g-°C),
Ciee = 2060 J/(kg K) =04921 cal/(g-°C),

L =3.33 10° J/kg =179,55

Although the thermal parameters of water are known with
a high degree of accuracy, those of dry sand are more uncer-
tain, owing to the marked influence of the mineralogic char-
acteristics. From the literature, the following ranges of vari-
ation for thermal capacity and conductivity can be assumed,
koo =0.27 = 3.0 W/(m-K) = 0.00063 +
0.007 cal/(s-cm-°C)
Cong = 600 + 800 J/(kg-K) = 0.15 +
0.19 cal/(g-°C)
A suggested average value for c is
Ceang (avg.) = 710 J/(kg-K) = 0.17 cal/(g-°C).
The thermal properties of the saturated soil can be evalu-
ated according to Kersten (1949). In particular, the thermal

capacity depends on the thermal properties of the minerals
constituting the sand and of the water (or ice), and on the

cal/g.

Temperature °C
8
//
o

\\‘
o
v
3
3
3

=60.3

1
&
(=]
/

-804t——rv++ — LI N S B e e B e e e e e ¢ T
0 4 8 12 16 20 24 28 32

Time h

Fi1G. 5. Temperature vs. time data from the test with pipe diam-
eter D, = 60.3 mm. Temperatures of the transducers located
at (a) 150 (b). 270, and (c) 390 mm from the cylinder axis.
d. room temperature; e, temperature of outer therma! insulation.
*, end of liquid nitrogen flow.

water content w. Hence, the equivalent thermal capacities
below and above freezing are

[ 1 l(l] Cfrozen = Caand

[l lb] Cunfrozen — €

In the above relationships, ¢, is the thermal capacity of
the dry sand, which was assumed equal to the above-
mentioned average value.

The equivalent latent heat (per unit mass) L., is defined as
the product of the latent heat of the water L by the water
content w: -

[12] L,=Lw

+ weg,

+wc

sand water
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Fi6. 7. Comparison between experimental and numerical tem-
perature vs. time data for the test with pipe diameter Dpipe =
33.7 mm. Temperatures of the transducers located at (a) 150,
(b) 270, and (c) 390 mm from the cylinder axis.

The procedure for evaluating the equivalent thermal con-
ductivity is less straightforward than the procedures used
for evaluating ¢ and L. A first attempt was based on the
diagrams proposed by Kersten (1949) (cf. Fig. 6), which

= 1.73 W (m-K)~". pcf, pounds per cubic foot (1 pcf = 0.016 t/m);

provide the conductivity as a function of water content and
type of soil.

Unfortunately, when adopted in the numerical analyses,
this procedure led to results only qualitatively similar to
those of the experimental data. It was decided, then, to mod-
ify the method for evaluating the conductivity and to adopt
the suggestion by Johansen and Frivik (1980). In this case the
equivalent parameter k depends on the conductivity of the
water (or ice), on that of quartz k,, and on that of the remain-
ing fraction of sand k, through the following expressions
which hold for temperatures below and above freezing,
respectively:

[13(1] kfrozcn (k:l; kil_q))(l_")

[13b] kunt’ro‘/.cn (k:l] kf'ln‘/))(l -

In using [13], where q is the content of quartz and n the
porosity of the sand, the following values of the relevant
parameters were adopted: kq 7.7 W/(m-K), k, =
2.5 W/(m-K), and g = 50%. It was also taken into account
that the thermal conductivity of ice undergoes a non-
negligible variation when the temperature decreases well
below the freezing point. To account for this effect, the
following linear interpolation of the experimetnal data was
adopted relating k;., (W/(m-K)) to temperature (°C) (Frivik
and Thorbergsen 1980): :

=k

ice

= kll

walter
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FiG. 8. Numerical and experimental results for the tests with
pipe diameter D, = 60.3 mm (other data as in Fig. 7).
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FiG. 9. Numerical and experimental results for the tests with
pipe diameter Dy, = 88.9 mm (other data as in Fig. 7).

(14] k=23 —-00I5T

Equations [11]-[14] have been introduced in the finite ele-
ment simulation of the freezing tests, obtaining results that
are shown in Figs. 7-9 together with the corresponding
experimental data. The only difference between the mater-
ial parameters used in the three analyses depends on the
slightly different relative density of sand.

The comparison between experimental and numerical
results indicates that the finite element calculation is able
to provide an acceptable estimation, from an engineering
standpoint, of the heat flow within the sand and that also
the progress of the 0°C isotherm is evaluated with reasonable
accuracy.

It is perhaps worthwhile to observe that the stepwise pat-
tern of the numerical diagrams in the vicinity of the phase-
change temperature depends on the particular procedure
adopted for taking into account the latent-heat effects.

6. Effect of diameter and distance of the freezing
pipes
Among the geometrical parameters that influence in situ
freezing are the diameter of the pipes and the distance among
them. To investigate their effect, a parametric study was
performed based on the developed finite element program.

FiG. 10. Mesh of isoparametric quadrilateral four-node ele-
ments for the two-dimensional analysis of freezing induced by a
square pattern of pipes.

Tpipe = 183 °C Toipe = =80 °C
o 8l |
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}05 g ’ ’," Pipe distance d=0.8 m|
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xga a
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FiG. 11. Results of the problem in Fig. 10. Variation with time
of the distance x between pipe axis and corresponding frozen
front for various coolant temperatures T and pipe diameters D.
Initial soil temperature T, = 20°C.

The finite element mesh adopted in the calculations is
depicted in Fig. 10, which represents a horizontal section
of a portion of a grid of regularly spaced pipes. The tem-
perature of the coolant is imposed at the external surface
of the pipes, while the remaining boundaries of the mesh, the
symmetry of the problem being taken into account, are con-
sidered impervious to heat.

In these calculations the material parameters coincide
with those used in the analysis of the laboratory test with the
60.3 mm diameter pipe. The initial temperature of the soil is
20°C.

The results of the parametric study are summarized in
Figs. 11 and 12 through diagrams relating the progress of the
frozen front, in terms of the nondimensional quantity x/(d/2),
with time. Here d represents the distance between the axis of
two adjacent pipes, and x is the distance between the pipe
axis and the corresponding 0°C isotherm. Consequently, the
frozen fronts of two adjacent pipes join with each other
when x/(d/2) = 1. Note that in situ freezing -is commonly
carried out using 60.3 mm diameter pipes and that the dis-
tance between them is about 80 cm.

Figure 11 shows two sets of curves corresponding, respec-
tively, to coolant temperatures of —183 and —80°C. With
reference to actual field conditions these temperatures refer
to pipes close to, and far away from, the inlet of liquid
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Fi1G. 12. Results of the problem in Fig. 10. Variation with time
of the distance x between pipe axis and corresponding frozen
front for various coolant temperatures T and pipe distances d.
Initial soil temperature T, = 20°C.

nitrogen. The curves within each set correspond to pipes
having external diameters of 88.9, 60.3, and 33.7 mm.

The diagrams in Fig. 12 refer only to 88.9 mm diameter
pipe. They show the progress of the 0°C isotherm with time
for different relative distances d of the pipes (i.e., 1.2, 1.0,
and 0.8 m). Again the temperature of the coolant is equal to
—183 and to —80°C.

The results of this parametric study clearly show the influ-
ence of pipe distance and diameter on the rate of freezing.
For instance, when d = 80 cm the time required for two
frozen fronts to join decreases by about 19% if the diame-
ter of the pipes increases from 60.3 to 88.9 mm. On the
contrary, a reduction of the diameter from 60.3 to 33.7 mm
leads, for the same value of d, to a time increment of about
24-28%. When large-diameter pipes are used (88.9 mm), a
time incremernt of about 75% is produced if the distance
between them increases from 0.8 to 1.0 m and goes up to
more than 180% if the distance increases to 1.2 m.

7. Conclusions

A study of the nonlinear conduction of heat within sat-
urated sand has been presented, with reference to the analy-
sis of the artificial freezing of soils. The purpose of this
study was to develop a finite element technique that can be
adopted in parametric investigations for “optimizing” some
of the parameters that characterize the freezing system.

A series of laboratory freezing tests on large samples was
carried out, the results of which permitted a check on the
accuracy of the developed computer program and provided
a convenient procedure for determining the thermal con-
stants of the soil. A parametric study has been also pre-
sented that illustrates the effects of the diameter of the freez-
ing pipes, the distance between the pipes, and the temperature
of the coolant on the progress of the frozen front.

On the basis of these results it is concluded that the devel-
oped numerical procedure is able to solve heat-transfer prob-
lems related to ground freezing with an acceptable accu-
racy from an engineering viewpoint. As expected, the
parametric study indicates that the diameter of the pipes
and the distance between them have a marked influence on
the time required by the freezing process. Since a reduc-
tion of time can appreciably influence the cost and, hence,
the design of the freezing system, further study on the opti-

mization of the mentioned quantities through more detailed
parametric investigations is needed.
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